Analisis Interdependensi

Sekarang kita belajar mengenai analisis interdependensi:)
Pada bagian analisis interdependensi, terdapat tiga teknik analisis yang meliputi analisis faktor, analisis kluster, dan multidimensional scaling.

a.Analisis Faktor

Analisis faktor ialah suatu teknik analisis yang digunakan untuk memahami yang mendasari dimensi-dimensi atau regularitas suatu gejala. Tujuan utama teknik ini ialah untuk membuat ringkasan informasi yang dikandung dalam sejumlah besar variable kedalam suatu kelompok faktor yang lebih kecil. Secara statistik tujuan pokok teknik ini ialah untuk menentukan kombinasi linear variable-variabel yang akan membantu dalam penyeledikan saling keterkaitannya variable-variabel tersebut. Atau dengan kata lain digunakan untuk mengidentifikasi variabel-variabel atau faktor-faktor yang menerangkan pola hubungan dalam seperangkat variabel. Teknik ini bermanfaat untuk mengurangi jumlah data dalam rangka untuk mengidentifikasi sebagian kecil faktor yang dapat menerangkan varians yang sedang diteliti secara lebih jelas dalam suatu kelompok variabel yang jumlahnya lebih besar. Kegunaan utama analisis faktor ialah untuk melakukan pengurangan data atau dengan kata lain melakukan peringkasan sejumlah variabel menjadi lebih kecil jumlahnya. Pengurangan dilakukan dengan melihat interdependensi beberapa variabel yang dapat dijadikan satu yang disebut dengan faktor sehingga diketemukan variabel-variabel atau faktor-faktor yang dominan atau penting untuk dianalisa lebih lanjut.
Prosedur analisis faktor juga dapat digunakan untuk membuat hipotesis yang mempertimbangkan mekanisme sebab akibat atau menyaring sejumlah variabel untuk kemudian dilakukan analisis selanjutnya, misalnya mengidentifikasi kolinearitas sebelum melakukan analisis regresi linear.
Dalam prosedur analisis faktor, terdapat tingkatan fleksibilitas tinggi, diantaranya ialah:
Tujuh metode untuk membuat ekstrasi faktor.
Lima metode rotasi, diantaranya ialah direct oblimin dan promax untuk rotasi non orthogonal.
Tiga metode untuk menghitung nilai-nilai faktor dan kemudian faktor-faktor tersebut dapat disimpan ke dalam file untuk dianalisis lebih lanjut.
Sebagai contoh dalam suatu penelitian, kita ingin mengetahui sikap-sikap apa saja yang mendasari orang mau memberikan jawaban terhadap pertanyaan-pertanyaan dalam suatu survei politik. Dari hasil penelitian didapatkan adanya tumpang tindih yang signifikan antara berbagai sub-kelompok butir-butir pertanyaan, misalnya pertanyaan-pertanyaan mengenai masalah perpajakan cenderung untuk berkorelasi satu dengan lainnya, masalah militer saling berkorelasi, masalah ekonomi juga demikian. Jika terjadi demikian, maka kita sebaiknya menyelesaikan persoalan tersebut dengan menggunakan analisis faktor. Dengan teknik ini kita dapat melakukan penyelidikan sejumlah faktor yang mendasarinya dan dapat mengidentifikasi faktor-faktor apa saja yang mewakilinya secara konseptual. Tidak hanya itu, kita juga dapat menghitung nilai-nilai untuk masing-masing responden dan kemudian dipergunakan untuk analisis selanjutnya. Sebagai contoh kita dapat membuat model regresi logistik untuk memprediksi perilaku pemberian suara didasarkan pada nilai-nilai faktor.
Untuk menggunakan teknik ini persyaratan yang sebaiknya dipenuhi ialah:
• Data yang digunakan ialah data kuantitatif berskala interval atau ratio.

• Data harus mempunyai distribusi normal bivariate untuk masing-masing pasangan variable
• Model ini mengkhususkan bahwa semua variabel ditentukan oleh faktor-faktor biasa (faktor-faktor yang diestimasikan oleh model) dan faktor-faktor unik (yang tidak tumpang tindih antara variabel-varaibel yang sedang diobservasi)
• Estimasi yang dihitung didasarkan pada asumsi bahwa semua faktor unik are tidak saling berkorelasi satu dengan lainnya dan dengan faktor-faktor biasa.
• Persyaratan dasar untuk melakukan penggabungan ialah besarnya korelasi antar variabel independen setidak-tidaknya 0,5 karena prinsip analisis faktor ialah adanya korelasi antar variabel.

b.Analisis Kluster

Analisis kluster merupakan suatu teknik analisis statistik yang ditujukan untuk membuat klasifikasi individu-individu atau obyek-obyek kedalam kelompok-kelompok lebih kecil yang berbeda satu dengan yang lain. Prosedur analisis kluster ini digunakan untuk mengidentifikasi kelompok kasus yang secara relatif sama yang didasarkan pada karakteristik-karakteristik yang sudah dipilih dengan menggunakan algoritma yang dapat mengatur kasus dalam jumlah besar. Algoritma yang digunakan mengharuskan kita membuat spesifikasi jumlah kluster-kluster yang akan dibuat. Metode yang digunakan untuk membuat klasifikasi dapat dipilih satu dari dua metode, yaitu memperbaharui kelompok-kelompok kluster secara iteratif atau hanya melakukan klasifikasi. Dalam analisa kluster tidak ada variabelbebas dan tergantung karena model analisa ini merupakan model independent. Kegunaan utama ialah untuk mengelompokkan obyek-obyek berdasarkan karakteristik tertentu yang sama. Obyek dapat berupa benda , misalnya produk ataupun orang yang biasa disebut responden. Kluster sebaiknya mempunyai kesamaan yang tinggi dalam kelompok kluster tersebut tetapi mempunyai perbedaan yang besar antar kelompok kluster
Contoh kasus: Kita ingin mengidentifikasi kelompok-kelompok pertunjukkan televisi yang menarik pemirsa yang mirip di setiap kelompok masing-masing. Dengan menggunakan analisis k-means cluster, kita dapat membuat kluster-kluster beberapa pertunjukkan televisi kedalam kelompok yang sama didasarkan pada karakteristik para pemirsa pertunjukkan tersebut. Kegunaan utama hal ini ialah untuk mengidentifikasi segmen-segmen untuk pemasaran yang akan bermanfaat untuk strategi pemasaran.
Untuk menggunakan teknik ini persyaratan yang harus dipenuhi, diantaranya ialah:
• Data yang digunakan untuk analisis ini ialah data kuantitatif berskala interval atau rasio.
• Metode yang ada ialah hubungan antara kelompok (between-groups linkage), hubungan dalam kelompok (within-groups linkage), kelompok terdekat (nearest neighbor), kelompok berikutnya (furthest neighbor), kluster centroid (centroid clustering), kluster median (median clustering), dan metode Ward’s.

dan masih ada satu lagi analisis interdependensi yg lainnya….
so…to be continue…^^

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: