Analisis Dependensi

Kali ini kita akan melanjutkan pembahasan kita mengenai Multivariate Analysis. Bagi yang belum membaca bagian pengenalan MTV bisa membacanya di Pendahuluan MTV

Berikut akan kita ulas sedikit mengenai Analisis Dependensi…
Analisis depedensi dibagi menjadi 1) analisis regresi berganda, 2) analisis diskriminan, 3) analisis multivariate varian, 4) analisis conjoint, dan 5) analisis korelasi kanonikal . Bagian berikut ini akan membahas masing-masing teknik analisis yang termasuk dalam metode-metode dependensi secara teori.

a. Analisis Regresi Linear Berganda

Yang dimaksud dengan analisis regresi linear berganda ialah suatu analisis asosiasi yang digunakan secara bersamaan untuk meneliti pengaruh dua atau lebih variable bebas terhadap satu variable tergantung dengan skala interval. Pada dasarnya teknik analisis ini merupakan kepanjangan dari teknik analisis regresi linear sederhana. Untuk menggunakan teknik analisis ini syarat-syarat yang harus dipenuhi diantaranya ialah:
– Data harus berskala interval.
– Variabel bebas terdiri lebih dari dua variable.
– Variabel tergantung terdiri dari satu variable.
– Hubungan antar variable bersifat linier. Artinya semua variable bebas mempengaruhi variable tergantung. Pengertian ini secara teknis disebut bersifat rekursif, maksudnya pengaruh bersifat searah dari variable-variabel X ke Y Tidak boleh terjadi sebaliknya atau juga saling berpengaruh secara timbal balik (reciprocal).
– Tidak boleh terjadi multikolinieritas. Artinya sesama variable bebas tidak boleh berkorelasi terlalu tinggi, misalnya 0,9 atau terlalu rendah, misalnya 0,01.
– Tidak boleh terjadi otokorelasi. Akan terjadi otokorelasi jika angka Durbin dan Watson sebesar < 1 atau > 3 dengan skala 1 – 4.
Jika ingin menguji keselarasan model (goodness of fit), maka dipergunakan simpangan baku kesalahan. Untuk kriterianya digunakan dengan melihat angka Standard Error of Estimate (SEE) dibandingkan dengan nilai simpangan baku (Standard Deviation). Jika angka Standard Error of Estimate (SEE) < simpangan baku (Standard Deviation), maka model dianggap selaras.
Kelayakan model regresi diukur dengan menggunakan nilai signifikansi. Model regresi layak dan dapat dipergunakan jika angka signifikansi lebih kecil dari 0,05 (dengan presisi 5%) atau 0,01 (dengan presisi 1%)

b. Analisis Diskriminan

Analisis diskriminan ialah suatu teknik statistik yang yang digunakan untuk memprediksi probabilitas obyek-obyek yang menjadi milik dua atau lebih kategori yang benar-benar berbeda yang terdapat dalam satu variable tergantung didasarkan pada beberapa variable bebas. Analisis ini digunakan untuk membuat satu model prediksi keanggotaan kelompok didasarkan pada karakteristik-karakteristik yang diobservasi untuk masing-masing kasus. Prosedur ini akan menghasilkan fungsi diskriminan yang didasarkan pada kombinasi-kombinasi linier yang berasal dari variabel-variabel prediktor atau bebas yang dapat menghasilkan perbedaan paling baik antara kelompok-kelompok yang dianalisis. Semua fungsi dibuat dari sampel semua kasus bagi keanggotaan kelompok yang sudah diketahui. Fungsi-fungsi tersebut dapat diaplikasikan untuk kasus-kasus baru yang mempunyai pengukuran untuk semua variabel bebas tetapi mempunyai keanggotaan kelompok yang belum diketahui.
Tujuan utama menggunakan analisis diskriminan ialah melihat kombinasi linier. Artinya untuk mempelajari arah perbedaan-perbedaan yang terdapat dalam suatu kelompok sehingga diketemukan adanya kombinasi linier dalam semua variable bebas. Kombinasi linier ini terlihat dalam fungsi diskriminan, yaitu perbedaan-perbedaan dalam rata-rata kelompok. Jika menggunakan teknik ini, pada praktiknya peneliti mempunyai tugas pokok untuk menurunkan koefesien-koefesien fungsi diskriminan (garis lurus). Sebagai contoh: Jenis pelanggan kereta api secara umum dapat dibagi dua, yaitu mereka yang menggunakan jasa kereta api eksekutif dan bisnis/ekonomi. Untuk membuat klasifikasi ini prosedur analisis diskriman dapat digunakan sehingga kita dapat mengetahui faktor-faktor yang berpengaruh terhadap pembuatan klasifikasi tersebut. Tujuan melakukan klasifikasi tersebut ialah kita dapat mengetahui apakah pengelompokan tersebut signifikan atau tidak. Artinya kelompok yang menggunakan jasa kereta api eksekutif memang benar-benar berbeda dengan kelompok yang menggunakan kelas bisnis / ekonomi. Untuk menggunakan teknik analisis ini syarat-syarat yang harus dipenuhi diantaranya ialah:
– Variabel tergantung hanya satu dan bersifat non-metrik, artinya data harus kategorikal dan berskala nominal.
– Variabel bebas terdiri lebih dari dua variable dan berskala interval.
– Semua kasus harus independent
– Semua variabel prediktor sebaiknya mempunyai distribusi normal multivariat, dan matrices variance-covariance dalam kelompok harus sama untuk semua kelompok
– Keanggotaan kelompok diasumsikan ekseklusif, maksudnya tidak satupun kasus yang termasuk dalam kelompok lebih dari satu. dan exhaustive secara kolektif, maksudnya semua kasus merupakan anggota satu kelompok

c. Analisis Korelasi Kanonikal

Analisis korelasi kanonikal ialah suatu teknik statistik yang digunakan untuk menentukan tingkatan asosiasi linear antara dua perangkat variable, dimana masing-masing perangkat terdiri dari beberapa variable. Sebenarnya analisis korelasi kanonikal merupakan perpanjangan dari analisis regresi linear berganda yang berfokus pada hubungan antara dua perangkat variable yang berskala interval. Fungsi utama teknik ini ialah untuk melihat hubungan linieritas antara variable-variabel kriteria (variable-variabel tergantung) dengan beberapa variable bebas yang berfungsi sebagai predictor.
Sebagai contoh seorang peneliti ingin mengkaji korelasi antara seperangkat variable dalam perilaku berbelanja sebagai kriteria dan beberapa variable mengenai personalitas sebagai predictor. Tujuan penelitian ini ialah peneliti ingin mengetahui bagaimana beberapa karakteristik personalitas tersebut mempengaruhi perilaku berbelanja, misalnya pembuatan daftar belanja, jumlah toko yang dikunjungi, dan frekuensi belanja dalam satu minggu. Untuk menggunakan teknik analisis ini syarat-syarat yang harus dipenuhi diantaranya ialah:
– Variabel bebas terdiri dari lebih dari dua variable yang berskala interval.
– Variabel tergantung terdiri dari lebih dari dua variable yang berskala interval.
– Hubungan antar variabel bebas dan tergantung bersifat linier. Artinya semua variabel bebas mempengaruhi secara searah terhadap semua variable tergantung, misalnya korelasi antara variable-variabel bebas personalitas yang digunakan sebagai predictor dengan variable-variabel tergantung yang digunakan sebagai kriteria bersifat searah. Jika nilai variabel variable personalitas besar, maka nilai variable-variabel perilaku berbelanja harus besar juga. Jika terjadi variabel variable personalitas besar bernilai besar sedang nilai variable-variabel perilaku berbelanja menjadi mengecil, maka hal ini berlawanan dengan asumsi linieritas.
– Tidak boleh terjadi multikolinieritas pada masing-masing kelompok variabel bebas dan variabel tergantung yang akan dikorelasikan.

d. Analsis Multivariat Varian (MANOVA)

Manova mempunyai pengertian sebagai suatu teknik statistik yang digunakan untuk menghitung pengujian signifikansi perbedaan rata-rata secara bersamaan antara kelompok untuk dua atau lebih variable tergantung. Teknik ini bermanfaat untuk menganalisis variable-variabel tergantung lebih dari dua yang berskala interval atau rasio.

Dalam SPSS prosedur MANOVA disebut juga GLM Multivariat digunakan untuk menghitung analisis regresi dan varians untuk variabel tergantung lebih dari satu dengan menggunakan satu atau lebih variabel faktor atau covariates. Variabel – variabel faktor digunakan untuk membagi populasi kedalam kelompok-kelompok. Dengan menggunakan prosedur general linear model ini, kita dapat melakukan uji H0 mengenai pengaruh variabel-variabel faktor terhadap rata-rata berbagai kelompok distribusi gabungan semua variabel tergantung. Kita dapat meneliti interakasi antara faktor-faktor dan efek dari faktor-faktor individu. Lebih lanjut, efek-efek covariates dan interaksi antar covariate dengan semua faktor dapat dimasukkan. Dalam analisis regresi, variabel bebas atau predictor dispesifikasi sebagai covariates

Sebagai contoh: Suatu perusahaan plastik mengukur tiga ciri khusus filem plastik: daya tahan tidak sobek, kehalusan, dan kapasitas. Dua tingkat ekstrusi dan dua zat aditif yang berbeda diujicobakan. Kemudian ketiga karakteristik tersebut diukur dengan menggunakan kombinasi tingkatan ekstrusi dan jumlah aditif masing-masing. Penelitian menemukan bahwa tingkat ekstrusi dan jumlah zat aditif masing-masing memberikan hasil yang signifikan, tetapi interaksi kedua faktor tidak signifikan

Pilihan-Pilihan untuk GLM Multivariate
Estimated Marginal Means. Pilihlah faktor-faktor dan interaksi yang kita inginkan untuk estimasi rata-rata marjinal populasi dalam sel-sel. Rata-rata ini jika ada kemudian dicocokkan dengan covariates. Interaksi akan ada jika kita mempunyai suatu model yang tetap.
Compare main effects. Menyediakan perbandingan pasangan yang tidak terkoreksi antara rata-rata marjinal yang diestimasi untuk setiap efek dalam suatu model, yaitu untuk antara dan dalam faktor. Pilihan ini hanya tersedia jika efek-efek ditentukan dengan menggunakan opsi Display Means For list.
Confidence interval adjustment. Pilihlah perbedaan signifikan yang terkecil (least significant difference (LSD)), Bonferroni atau Tidak disesuaikan dengan tingkat kepercayaan (confidence intervals) dan signifikansi. Opsi ini tersedia jika pilihan diberikan jika efek-efek utama perbandingan dipilih.
Untuk menggunakan MANOVA beberapa persyaratan yang harus dipenuhi ialah:
– Variabel tergantung harus dua atau lebih dengan skala interval
– Variabel bebas satu dengan menggunakan skala nominal.
– Untuk semua variabel tergantung, data diambil dengan cara random sample dari vektor-vektor populasi normal multivariate dalam suatu populasi, dan untuk matrik-matrik variance-covariance untuk semua sel sama
Untuk menggunakan prosedur GLM gunakan prosedur Explore untuk memeriksa data sebelum melakukan analisis variance. Untuk satu variabel tergantung gunakanlah, prosedur GLM Univariate. Jika kita mengukur beberapa variabel tergantung yang sama pada beberapa kesempatan untuk masing-masing subyek, maka gunakanlah GLM Repeated Measures.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: